首页> 外文OA文献 >Goodness-of-fit tests for the error distribution in nonparametric regression
【2h】

Goodness-of-fit tests for the error distribution in nonparametric regression

机译:非参数回归中误差分布的拟合优度检验

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Suppose the random vector (X, Y) satisfies the regression model Y = m (X) + sigma(X)epsilon, where m(.) is the conditional mean, sigma(2)(.) is the conditional variance, and E is independent of X. The covariate X is d-dimensional (d >= 1), the response Y is one-dimensional, and m and a are unknown but smooth functions. Goodness-of-fit tests for the parametric form of the error distribution are studied under this model, without assuming any parametric form for m or a. The proposed tests are based on the difference between a nonparametric estimator of the error distribution and an estimator obtained under the null hypothesis of a parametric model. The large sample properties of the proposed test statistics are obtained, as well as those of the estimator of the parameter vector under the null hypothesis. Finally, the finite sample behavior of the proposed statistics, and the selection of the bandwidths for estimating m and sigma are extensively studied via simulations. (C) 2010 Published by Elsevier B.V.
机译:假设随机向量(X,Y)满足回归模型Y = m(X)+ sigma(X)epsilon,其中m(。)是条件均值,sigma(2)(。)是条件方差,而E独立于X。协变量X为d维(d> = 1),响应Y为一维,m和a是未知但平稳的函数。在此模型下研究误差分布的参数形式的拟合优度检验,而不假设m或a的任何参数形式。建议的测试基于误差分布的非参数估计量与在参数模型的原假设下获得的估计量之间的差异。获得了拟议的测试统计量的大样本属性,以及在原假设下参数向量的估计量的属性。最后,通过仿真广泛研究了所提出统计量的有限样本行为,以及用于估计m和sigma的带宽的选择。 (C)2010由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号